organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ru-Mei Cheng, Yi-Zhi Li,* Sheng-Ju Ou and Xue-Tai Chen

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.065 wR factor = 0.159 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3,5-Bis(salicylideneamino)-1*H*-1,2,4-triazole methanol solvate

In the crystal structure of the title compound, $C_{16}H_{13}N_5O_{2}$ - CH_4O , there are intra- and intermolecular hydrogen bonds. Molecules form dimers, which are extended to afford a ribbon structure. These ribbons are further packed, forming a three-dimensional grid structure.

Comment

Azole subunits are frequently present in biologically active compounds (Street *et al.*, 1995). Triazole derivatives have been studied as anti-inflammatory drug candidates and also been used as ligands for binding Pt and Ru to form antitumor metal complexes (Komeda *et al.*, 2002). As a consequence, much ongoing effort has been devoted to derivatives of 1,2,4-triazole and their metal complexes for medical use. However, derivatives of 3,5-diamino-1*H*-1,2,4-triazole have not been well studied (El-Hefnawy *et al.*, 1993; Elshani *et al.*, 2005). We report here the crystal structure of the title compound, (I), which is a Schiff base derived from 3,5-diamino-1*H*-1,2,4triazole.

In (I), there are intra- and intermolecular hydrogen bonds (Table 1). The two benzene rings (ring 1 = C1-C6 and ring 3 = C11-C16) and the triazole ring (ring 2 = N1/N2/C8/N4/C9) are almost in the same plane (Fig. 1), the angles between rings 1 and 2, and between rings 2 and 3 being 3.7 (2) and 3.3 (2)°, respectively. The bond lengths of the triazole ring are very similar to other 1H-1,2,4-triazole derivatives (Claramunt *et al.*, 2001; Zhou *et al.*, 2001). The triazole and methanol molecules are linked through $O-H \cdots N$ and $N-H \cdots O$ hydrogen bonds (Table 1) to form dimers, which are extended by weak intermolecular $C-H \cdots O$ interactions to afford a ribbon structure (Fig. 2). These ribbons are further packed through weak $C-H \cdots N$ hydrogen bonds, forming a three-dimensional grid structure.

Experimental

The title compound, (I), was prepared, in 60% yield, by condensation of 3,5-diamino-1*H*-1,2,4-triazole with salicylaldehyde in a 1:2 ratio in hot methanol. Suitable crystals for X-ray diffraction were obtained by recrystallization from a methanol solution. Analysis found: C 60.15, H 5.15, N 20.58%; calculated for $C_{17}H_{17}N_5O_3$: C 60.17, H 5.05, N 20.64%.

© 2006 International Union of Crystallography All rights reserved

01424 Cheng et al. • C₁₆H₁₃N₅O₂·CH₄O

Received 21 February 2006 Accepted 9 March 2006

Figure 1

A view of the molecular structure of (I), showing 30% probability displacement ellipsoids. Two molecules form a dimer through $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines) [symmetry code: (i) 2 - x, 1 - y, -z].

Figure 2

A view of the ribbon structure of (I). The ribbons are arranged in crosslinking directions, forming a three-dimensional grid structure [symmetry codes: (ii) -x, 2 - y, -z; (iii) -2 + x, 1 + y, -z; (iv) $\frac{3}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$].

Crystal data

$C_{16}H_{13}N_5O_2 \cdot CH_4O$	$D_x = 1.316 \text{ Mg m}^{-3}$
$M_r = 339.36$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 428
a = 5.8562 (7) Å	reflections
b = 9.1651 (12) Å	$\theta = 2.3 - 17.5^{\circ}$
c = 31.907 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 90.332 \ (3)^{\circ}$	T = 293 (2) K
V = 1712.5 (4) Å ³	Block, colorless
Z = 4	$0.28 \times 0.24 \times 0.22 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-	3374 independent reflections
detector diffractometer	1686 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.053$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Bruker, 2000)	$h = -7 \rightarrow 6$
$T_{\min} = 0.97, \ T_{\max} = 0.98$	$k = -7 \rightarrow 11$
9110 measured reflections	$l = -39 \rightarrow 30$

Refinement

Refinement on F^2 H atoms treated by a mixture of
independent and constrained
refinement $R[F^2 > 2\sigma(F^2)] = 0.066$ independent and constrained
refinement $wR(F^2) = 0.159$ $w = 1/[\sigma^2(F_o^2) + (0.0643P)^2]$
3374 reflections3374 reflections $w = 1/[\sigma^2(F_o^2) + (2.0643P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
 $(\Delta/\sigma)_{max} < 0.001$
 $\Delta\rho_{max} = 0.18$ e Å⁻³

Table 1	
Hydrogen-bond geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2A\cdots N5$	1.05 (4)	1.72 (4)	2.618 (3)	141 (3)
$O1-H1A\cdots N3$	1.06 (4)	1.77 (4)	2.645 (3)	137 (3)
$O3-H3A\cdots N2$	0.89 (4)	1.91 (4)	2.773 (3)	164 (4)
$N1 - H1B \cdot \cdot \cdot O3^{i}$	0.94 (3)	1.77 (3)	2.702 (3)	172 (3)
$C15-H15\cdots O2^{ii}$	0.93	2.79	3.694 (4)	164
C14−H14···O1 ⁱⁱⁱ	0.93	2.81	3.522 (4)	134
$C4-H4\cdots N4^{iv}$	0.93	2.64	3.481 (4)	151

 $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x, -y + 2, -z; (iii) x - 2, y + 1, z; (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

N- and O-bound H atoms were found in a difference Fourier map and their coordinates were refined with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm O,N})$. Other H atoms were placed in calculated positions, with C-H = 0.93– 0.96 Å, and included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ or $1.5 U_{\rm eq}({\rm methyl} {\rm C})$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by a measurement grant from Nanjing University.

References

- Bruker (2000). SMART (Version 5.0), SAINT-Plus (Version 6), SHELXTL (Version 6.1) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Claramunt, R. M., Lopez, C., Angeles, G. M., Dolores, O. M., Rosario, T. M., Pinilla, E., Alarcon, S. H., Alkorta, I. & Elguero, J. (2001). New J. Chem. 25, 1061–1068.
- El-Hefnawy, G. B., El-Baradie, K. Y. & El-Trass, A. (1993). *Egypt. J. Chem.* 36, 177–187.
- Elshani, S., Wai, C. M., Shreeve, J. M., Rogers, R. D. & Bartsch, R. A. (2005). J. Heterocycl. Chem. 42, 621–629.
- Komeda, S., Lutz, M., Spek, A. L., Yamanaka, Y., Sato, T., Chikuma, M. & Reedijk, J. (2002). J. Am. Chem. Soc. 124, 4738–4746.
- Street, L. J., Baker, R., Davey, W. B., Guiblin, A. R., Jelley, R. A., Reeve, A. J., Routledge, H., Sternfeld, F., Watt, A. P., Beer, M. S., Middlemiss, D. N., Noble, A. J., Stanton, J. A., Scholey, K., Hargreaves, R. J. et al. (1995). J. Med. Chem. 38, 1799–1810.
- Zhou, X. J., Kovalev, E. G., Klug, J. T. & Khodorkovsky, V. (2001). Org. Lett. 3, 1725–1727.