Structure Reports

Online
ISSN 1600-5368

Ru-Mei Cheng, Yi-Zhi Li,* Sheng-Ju Ou and Xue-Tai Chen

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.065$
$w R$ factor $=0.159$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,5-Bis(salicylideneamino)-1H-1,2,4-triazole methanol solvate

In the crystal structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot-$ $\mathrm{CH}_{4} \mathrm{O}$, there are intra- and intermolecular hydrogen bonds. Molecules form dimers, which are extended to afford a ribbon structure. These ribbons are further packed, forming a threedimensional grid structure.

Comment

Azole subunits are frequently present in biologically active compounds (Street et al., 1995). Triazole derivatives have been studied as anti-inflammatory drug candidates and also been used as ligands for binding Pt and Ru to form antitumor metal complexes (Komeda et al., 2002). As a consequence, much ongoing effort has been devoted to derivatives of 1,2,4-triazole and their metal complexes for medical use. However, derivatives of 3,5-diamino-1 H -1,2,4-triazole have not been well studied (El-Hefnawy et al., 1993; Elshani et al., 2005). We report here the crystal structure of the title compound, (I), which is a Schiff base derived from 3,5-diamino- $1 \mathrm{H}-1,2,4$ triazole.

(I)

In (I), there are intra- and intermolecular hydrogen bonds (Table 1). The two benzene rings (ring $1=\mathrm{C} 1-\mathrm{C} 6$ and ring $3=$ $\mathrm{C} 11-\mathrm{C} 16$) and the triazole ring (ring $2=\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 8 / \mathrm{N} 4 / \mathrm{C} 9$) are almost in the same plane (Fig. 1), the angles between rings 1 and 2 , and between rings 2 and 3 being 3.7 (2) and 3.3 (2) ${ }^{\circ}$, respectively. The bond lengths of the triazole ring are very similar to other $1 \mathrm{H}-1,2,4$-triazole derivatives (Claramunt et al., 2001; Zhou et al., 2001). The triazole and methanol molecules are linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) to form dimers, which are extended by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions to afford a ribbon structure (Fig. 2). These ribbons are further packed through weak C $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming a three-dimensional grid structure.

Experimental

The title compound, (I), was prepared, in 60% yield, by condensation of 3,5-diamino-1 H -1,2,4-triazole with salicylaldehyde in a $1: 2$ ratio in hot methanol. Suitable crystals for X-ray diffraction were obtained by recrystallization from a methanol solution. Analysis found: C 60.15, H 5.15 , N 20.58%; calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3}$: C $60.17, \mathrm{H} 5.05, \mathrm{~N}$ 20.64\%.

Received 21 February 2006
Accepted 9 March 2006

Figure 1
A view of the molecular structure of (I), showing 30% probability displacement ellipsoids. Two molecules form a dimer through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (dashed lines) [symmetry code: (i) $2-x$, $1-y,-z]$.

Figure 2
A view of the ribbon structure of (I). The ribbons are arranged in crosslinking directions, forming a three-dimensional grid structure [symmetry codes: (ii) $-x, 2-y,-z$; (iii) $-2+x, 1+y,-z$; (iv) $\frac{3}{2}-x$, $\left.-\frac{1}{2}+y, \frac{1}{2}-z\right]$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot \mathrm{CH}_{4} \mathrm{O} \\
& M_{r}=339.36 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=5.8562(7) \AA \\
& b=9.1651(12) \AA \\
& c=31.907(4) \AA \\
& \beta=90.332(3)^{\circ} \\
& V=1712.5(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-	3374 independent reflections
detector diffractometer	1686 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.053$
Absorption correction: multi-scan	$\theta_{\max }=26.0^{\circ}$
$(S A D A B S ;$ Bruker, 2000 $)$	$h=-7 \rightarrow 6$
$T_{\min }=0.97, T_{\max }=0.98$	$k=-7 \rightarrow 11$
9110 measured reflections	$l=-39 \rightarrow 30$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.159$
$S=0.96$
3374 reflections
240 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0643 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.18 \mathrm{e}^{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 5$	1.05 (4)	1.72 (4)	2.618 (3)	141 (3)
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 3$	1.06 (4)	1.77 (4)	2.645 (3)	137 (3)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 2$	0.89 (4)	1.91 (4)	2.773 (3)	164 (4)
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\text {i }}$	0.94 (3)	1.77 (3)	2.702 (3)	172 (3)
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.79	3.694 (4)	164
C14-H14 \cdots O1 $1^{\text {iii }}$	0.93	2.81	3.522 (4)	134
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~N} 4^{\text {iv }}$	0.93	2.64	3.481 (4)	151

Symmetry codes: (i) $-x+2,-y+1,-z$; (ii) $-x,-y+2,-z$; (iii) $x-2, y+1, z$; (iv) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

N - and O -bound H atoms were found in a difference Fourier map and their coordinates were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O}, \mathrm{N})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.96 \AA$, and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by a measurement grant from Nanjing University.

References

Bruker (2000). SMART (Version 5.0), SAINT-Plus (Version 6), SHELXTL (Version 6.1) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Claramunt, R. M., Lopez, C., Angeles, G. M., Dolores, O. M., Rosario, T. M., Pinilla, E., Alarcon, S. H., Alkorta, I. \& Elguero, J. (2001). New J. Chem. 25, 1061-1068.
El-Hefnawy, G. B., El-Baradie, K. Y. \& El-Trass, A. (1993). Egypt. J. Chem. 36, 177-187.
Elshani, S., Wai, C. M., Shreeve, J. M., Rogers, R. D. \& Bartsch, R. A. (2005). J. Heterocycl. Chem. 42, 621-629.
Komeda, S., Lutz, M., Spek, A. L., Yamanaka, Y., Sato, T., Chikuma, M. \& Reedijk, J. (2002). J. Am. Chem. Soc. 124, 4738-4746.
Street, L. J., Baker, R., Davey, W. B., Guiblin, A. R., Jelley, R. A., Reeve, A. J., Routledge, H., Sternfeld, F., Watt, A. P., Beer, M. S., Middlemiss, D. N., Noble, A. J., Stanton, J. A., Scholey, K., Hargreaves, R. J. et al. (1995). J. Med. Chem. 38, 1799-1810.
Zhou, X. J., Kovalev, E. G., Klug, J. T. \& Khodorkovsky, V. (2001). Org. Lett. 3, 1725-1727.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

